Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Profilakticheskaya Meditsina ; 26(1):114-119, 2023.
Article in Russian | EMBASE | ID: covidwho-2257854

ABSTRACT

The COVID-19 pandemic is a global healthcare crisis. The frequency of acute kidney injury (AKI) in patients with COVID-19 and the features of its diagnostics indicate the relevance of the topic. Objective of the review. To analyze mechanisms of AKI development in patients with COVID-19 and provide support for methodological approaches to ensure its timely diagnosis. Material and methods. The methodological approaches used in the review are based on a sufficient number of literature sources (more than 150 sources), of which 34 articles are included in the review: 15 original studies, 12 reviews, 2 meta-analyses, 5 re-ports, and letters to the editor. Results. The mechanisms of AKI development and progression, including the direct cytotoxic effect of the SARS-CoV-2 virus, dis-ruption of metabolic pathways of renal blood flow regulation, and the complement system, are considered. We also analyzed AKI risk factors in patients with acute respiratory distress: diabetes mellitus, chronic kidney injury, arterial hypertension with im-paired NOx production, and eNOS expression as significant factors of vasodilation in renal microcirculatory vessels. The analy-sis showed the most perspective directions in the diagnostics of AKI functional stages. These include molecular test methods (pro-teome and metabolome) in blood and urine;they helped define damage markers to proximal tubules and the glomerular system, thus improving the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis. Conclusion. The Coronado study aims to assess the phenotypic features of patients with diabetes mellitus and COVID-19. More specific markers of the acute kidney injury functional stage were determined;these markers will improve the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis.Copyright © 2023, Media Sphera Publishing Group. All rights reserved.

2.
Journal of Hypertension ; 41:e88, 2023.
Article in English | EMBASE | ID: covidwho-2244622

ABSTRACT

Objective: COVID19 is associated with vascular inflammation. IFN-alpha (IFNa) and IFN-lambda3 (IFNl3) are potent cytokines produced in viral infections. Their effects involve interferon-stimulated genes (ISGs) and may influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFN-activated pathways Design and methods: Human ECs were stimulated with S1P (1 mg/mL), IFNa (100ng/mL) or IFNl3 (100IU/mL). Because ACE2, ADAM17 and TMPRSS2 are important for SARS-CoV-2 infection, we used inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 mM). Gene and protein expression was investigated by real-time PCR and immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive (LinA3) mice and in ISG15-deficient (ISG15KO) mice. Results: S1P increased expression of IFNa (3-fold), IFNl3 (4-fold) and ISGs (2-fold) in EC (p < 0.05). EC responses to IFNa (ISG15: 16-fold) were greater than to IFNl3 (ISG15: 1.7-fold) (p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFa (6.2-fold) and IL-1b (3.3-fold), effects that were amplified by IFNs. Only the ADAM17 inhibitor marimastat inhibited S1P effects. IFNa and IFNl3 increase protein expression of ADAM17 (27%) and TMPRSS2 (38%). No changes were observed on ACE2 expression. This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). EC production of IL-6 was increased by IFNa (1,230pg/mL) and IFNl3 (1,124pg/mL) vs control (591pg/mL). Nitric oxide generation and eNOS phosphorylation (Ser1177) were reduced by IFNa (40%) and IFNl3 (40%). Vascular functional responses demonstrated that endothelium-dependent vasorelaxation (% Emax) in vessels from WT-mice stimulated with IFNa (67%) and IFNl3 (71%) were reduced vs control (82%) (p < 0.05). Responses were not altered in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNa (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN) (p < 0.05). Conclusions: In ECs, S1P, IFNa and IFNl3 increased ISG15 and IL-6 by mechanisms dependent on ADAM17. IFNs amplifies endothelial cell inflammatory responses and induced vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This may be especially important in the presence of cardiovascular risk factors, including hypertension.

3.
Profilakticheskaya Meditsina ; 26(1):114-119, 2023.
Article in Russian | EMBASE | ID: covidwho-2240432

ABSTRACT

The COVID-19 pandemic is a global healthcare crisis. The frequency of acute kidney injury (AKI) in patients with COVID-19 and the features of its diagnostics indicate the relevance of the topic. Objective of the review. To analyze mechanisms of AKI development in patients with COVID-19 and provide support for methodological approaches to ensure its timely diagnosis. Material and methods. The methodological approaches used in the review are based on a sufficient number of literature sources (more than 150 sources), of which 34 articles are included in the review: 15 original studies, 12 reviews, 2 meta-analyses, 5 re-ports, and letters to the editor. Results. The mechanisms of AKI development and progression, including the direct cytotoxic effect of the SARS-CoV-2 virus, dis-ruption of metabolic pathways of renal blood flow regulation, and the complement system, are considered. We also analyzed AKI risk factors in patients with acute respiratory distress: diabetes mellitus, chronic kidney injury, arterial hypertension with im-paired NOx production, and eNOS expression as significant factors of vasodilation in renal microcirculatory vessels. The analy-sis showed the most perspective directions in the diagnostics of AKI functional stages. These include molecular test methods (pro-teome and metabolome) in blood and urine;they helped define damage markers to proximal tubules and the glomerular system, thus improving the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis. Conclusion. The Coronado study aims to assess the phenotypic features of patients with diabetes mellitus and COVID-19. More specific markers of the acute kidney injury functional stage were determined;these markers will improve the diagnostics accuracy and validity, therapy efficiency, and end points of disease prognosis.

4.
Acta Biomedica Scientifica ; 7(6):51-70, 2022.
Article in Russian | Scopus | ID: covidwho-2232198

ABSTRACT

This literature review presents the role of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO), as well as arginine, the enzyme substrate, in the disease of metabolic syndrome and COVID-19 (SARS-CoV-2 virus). Metabolic syndrome is a combination of obesity, insulin resistance, hyperglycemia, dyslipidemia and hypertension. Ithas been shown thatin elderly people, patients withobesity, metabolic syndrome, type 2 diabetes mellitus (DM2), and patients with COVID-19, endothelial dysfunction (ED) and vascular endothelial activation are detected. ED is the main cause of a number of pathological conditions during the development of COVID-19 and earlier in patients with metabolic syndrome, while a sharp drop in the level ofnitric oxide (NO)is detecteddue to a decrease in the expression andactivity ofeNO synthase and enzyme depletion, which leads to a violation of the integrity of blood vessels, that is, to vasoconstrictive, inflammatory and thrombotic conditions, followedby ischemia oforgans andedema oftissues. It shouldbe notedthat metabolic syndrome, DM2, hypertension and obesity, in particular, are age-related diseases, and it is known that blood glucose levels increase with age, which reduces the bioavailability of NO in endothelial cells. Defects in the metabolism of NO cause dysfunction in the pulmonary blood vessels, the level of NO decreases, which leads to impaired lung function and coagulopathy. The review presents possible mechanisms of these disorders associated with ED, the release of eNO synthase, changes in phosphorylation and regulation of enzyme activity, as well as insulin resistance. A modern view of the role of the polymorphism of the eNO synthase gene in the development of these pathologies is presented. To increase the level of endothelial NO, drugs are offered that regulate the bioavailability of NO. These include arginine, agonist NO – minoxidil, steroid hormones, statins, metformin. However, further research and clinical trials are needed to develop treatment strategies that increase NO levels in the endothelium. © 2022 Scientific Centre for Family Health and Human Reproduction Problems. All right reserved.

5.
Hum Cell ; 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-2234148

ABSTRACT

The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.

6.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2115975

ABSTRACT

Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.


Subject(s)
COVID-19 , Nitric Oxide , Humans , Nitric Oxide/metabolism , Hemoglobins/metabolism , Endothelium, Vascular/metabolism
7.
Matrix Biol Plus ; 16: 100121, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049630

ABSTRACT

The glycocalyx attached to the apical surface of vascular endothelial cells is a rich network of proteoglycans, glycosaminoglycans, and glycoproteins with instrumental roles in vascular homeostasis. Given their molecular complexity and ability to interact with the intra- and extracellular environment, heparan sulfate proteoglycans uniquely contribute to the glycocalyx's role in regulating endothelial permeability, mechanosignaling, and ligand recognition by cognate cell surface receptors. Much attention has recently been devoted to the enzymatic shedding of heparan sulfate proteoglycans from the endothelial glycocalyx and its impact on vascular function. However, other molecular modifications to heparan sulfate proteoglycans are possible and may have equal or complementary clinical significance. In this narrative review, we focus on putative mechanisms driving non-proteolytic changes in heparan sulfate proteoglycan expression and alterations in the sulfation of heparan sulfate side chains within the endothelial glycocalyx. We then discuss how these specific changes to the endothelial glycocalyx impact endothelial cell function and highlight therapeutic strategies to target or potentially reverse these pathologic changes.

8.
Journal of Hypertension ; 40:e29, 2022.
Article in English | EMBASE | ID: covidwho-1937690

ABSTRACT

Objective: COVID19-associated immunopathology is associated with increased production of interferon (IFN)-alpha (IFNα) and lambda3 (IFNL3). Effects of IFNs are mediated by interferon-stimulated genes (ISGs) and influence expression of angiotensin-converting enzyme 2 (ACE2), the receptor for S-protein (S1P) of SARS-CoV-2. Increasing evidence indicates vascular inflammation in cardiovascular sequelae of COVID19. We hypothesized that S1P-induced immune/inflammatory responses in endothelial cells (EC) are mediated via IFNα and IFNL3. Design and method: Human ECs were stimulated with S1P (1 μg/mL), IFNα (100ng/mL) or IFNL3 (100IU/mL). Because ACE2, metalloproteinase domain-17 (ADAM17) and type-II transmembrane serine protease (TMPRSS2) are important for SARS-CoV-2 infection, cells were treated with inhibitors of ADAM17 (marimastat, 3.8 nM), ACE2 (MLN4760, 440pM), and TMPRSS2 (camostat, 50 μM). Gene and protein expression was investigated by real-time PCR immunoblotting, respectively. Vascular function was assessed in mesenteric arteries from wild-type (WT) normotensive and hypertensive mice and in ISG15-deficient (ISG15KO) mice. Results: EC stimulated with S1P increased expression of IFNα (3-fold), IFNL3 (4-fold) and ISG (2-fold)(p < 0.05). EC exhibited higher responses to IFNα (ISG15: 16-fold) than to IFNL3 (ISG15: 1.7-fold)(p < 0.05). S1P increased gene expression of IL-6 (1.3-fold), TNFα (6.2-fold) and IL-1β (3.3-fold), effects that were maximized by IFNs. Only marimastat inhibited S1P effects. IL-6 was increased by IFNα (1,230pg/mL) and IFNL3 (1,124pg/mL) vs control (591pg/ mL). This was associated with increased phosphorylation of Stat1 (134%), Stat2 (102%), ERK1/2 (42%). Nitric oxide production and eNOS phosphorylation (Ser1177) were reduced by IFNα and (40%) and IFNL3 (40%). Reduced endothelium relaxation maximal response (%Emax) was observed in vessels from WTmice stimulated with IFNα (67%) and IFNL3 (71%) vs control (82%)(p < 0.05) but not in vessels from ISG15KO mice. Increased contraction was observed only in vessels from hypertensive mice treated with IFNα (9.1 ± 0.5mN vs control: 7.3 ± 0.3mN, p < 0.05). Conclusions: In ECs, S1P, IFNα and IFNL3 increased ISG15 and IL-6, processes that involve ADAM17. Inflammation induced by S1P was amplified by IFNs. IFNs induce vascular dysfunction through ISG15-dependent mechanisms, with augmented effects in hypertension. Our findings demonstrate that S1P induces immune/inflammatory responses that may be important in endotheliitis associated with COVID-19. This is especially important in the presence of cardiovascular risk factors, including hypertension.

9.
Nephrology Dialysis Transplantation ; 37(SUPPL 3):i205-i206, 2022.
Article in English | EMBASE | ID: covidwho-1915690

ABSTRACT

BACKGROUND AND AIMS: Replication of the enveloped SARS-COV2 virus can alter lipidomic composition and metabolism of infected cells [1]. These alterations commonly result in a decline in HDL, total cholesterol and LDL, and an increase in triglyceride levels in COVID-19 patients. Furthermore, the 'cytokine storm' subsequent to release of inflammatory cytokines can severely impair lipid homeostasis. Importantly, decreased HDL-cholesterol correlates with severity of COVID-19 infection and represents a significant prognostic factor in predicting poor clinical outcomes [2]. Similarly, it has been observed that COVID-19 patients' recovery is accompanied by a rise in serum HDL levels. Pharmacological intervention that aims to restore ApoA-1 or functional HDL particles may have beneficial roles for clinical outcome of COVID-19 patients and has recently been approved for compassionate use [3]. SARS-CoV 2 spike proteins S1 and S2 can bind free cholesterol and HDL-bound cholesterol, facilitating virus entry by binding the ACE2 co-receptor Scavenger Receptor-BI (SR-BI) [4]. When activated at the trans-membrane level, SR-BI signalling culminates in Ser1173-eNOS phosphorylation with both anti-inflammatory and anti-apoptotic effect. We hypothesized that SARS-COV2 binding promoted SR-BI internalization, so that it could not exert its essential protective function. Therefore, the aim of this study is to evaluate the effects of CER-001, a mimetic HDL, in antagonizing this process. METHOD: Endothelial and tubular (RPTEC) cells were exposed to S1, S2 and S1 + S2 (50-250 nM) with or without CER-001 (CER-001 50-500 ug/mL) and cholesterol (10-50 uM). Apoptosis tests (MTT and AnnV/PI) were performed. Internalization of SR-BI, ACE2 with S1 and activation of eNOS was evaluated by FACS analysis. SR-BI and ACE2 expression were evaluated on kidney biopsies from COVID-19 patients. RESULTS: At concentrations used, the exposition of S1, S2 and S1 + S2 in the presence of CER-001 and cholesterol did not induce apoptosis of endothelial cells and RPTEC. Endothelial and tubular cells stimulated by S1, in presence of cholesterol, showed an increased intracellular level of SR-BI and ACE-2, with significantly reduced eNOS phosphorylation compared to baseline (P < 0.05). The treatment with CER-001 reversed trans-membrane SR-BI levels and eNOS phosphorylation to baseline values. The detection of S1 spike protein by endothelial cells immunohistochemistry revealed an increased level in S1-exposed cells with cholesterol and reduced S1 intracellular positive staining in CER-001-exposed cells (P < 0.05). Interestingly, S1-exposed cells without cholesterol appeared not to be capable of mediating S1 spike protein internalization. Consistent with in vitro results, analysis of renal biopsies from COVID-19 patients with proteinuria showed increased SR-BI and ACE-2 cytoplasmic signals and reduced expression at the apical domain of injured tubules. CONCLUSION: Our data confirmed the key role of lipid profile in SARS-COV2 infection, evaluating the molecular signalling involved in HDL metabolism and inflammatory processes, and could offer new therapeutic strategies for COVID-19 patients. (Figure Presented).

10.
Pharmacia ; 69(2):509-516, 2022.
Article in English | EMBASE | ID: covidwho-1896948

ABSTRACT

COVID-19 leads to disruption of the blood coagulation system, to thrombosis, hypercoagulability, as a result, to an increased risk of strokes and heart attacks. During COVID-19, endothelial dysfunction develops associated with NO deficiency with decrease in the level of SH compounds. Tiazotic acid (Thiotriazoline) has immunomodulatory, anti-inflammatory, antioxidant, anti-ischemic, cardio- and endothelioprotective, antiplatelet, hepatoprotective activity. Our studies conducted at the National Research Medical Center “University Clinic of ZSMU” with the participation of 57 patients (from 30 to 65 years old) with post-COVID syndrome, who received thiotriazol with basic therapy in either tablets (200 mg each) or suppositories Dalmaxin (0.2 g each) twice a day for 30 days. Inclusion criteria for the study were a positive PCR test for COVID-19;if the PCR test was negative, then the presence of IgM COVID-19 or IgG COVID-19 (with radiologically confirmed pneumonia). The following biochemical parameters were studied: C-reactive protein - by immunoturbodimetric method;D-dimer - by enzyme immunoassay;ferritin - by immunochemiluminescent method;endothelial NO-synthase (eNOS) - by ELISA method;alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin;international normalized ratio (INR) and determination of platelet aggregation. During treatment with thiotriazoline, significant increase in the eNOS content was recorded, which indicated the presence of endotheliopro-tective activity of the drug. Thiotriazoline significantly reduced the level of D-dimer in the blood of patients, and also led to the normalization of INR. The established effects testified to the presence of antiplatelet and fibrinolytic action of thiotriazoline and its ability to reduce the risks of heart attacks and strokes in post-COVID syndrome. Thiotriazoline led to an objective improvement in general clinical parameters in patients with post-COVID syndrome, complaints of palpitations disappeared, blood pressure stabilized.

11.
Fertility and Sterility ; 116(3 SUPPL):e96, 2021.
Article in English | EMBASE | ID: covidwho-1880470

ABSTRACT

OBJECTIVE: To describe the histopathological features of penile tissue of patients who recovered from symptomatic COVID-19 infection and subsequently developed severe erectile dysfunction (ED). MATERIALS AND METHODS: After providing informed consent, penile tissue was collected from patients undergoing surgery for inflatable penile prosthesis due to severe ED under an IRB approved protocol. Two specimens were obtained from men with a history of COVID-19 infection and two specimens were obtained from men with no history of infection (all men tested negative immediately before surgery). Tissue from COVID-19 (+) and COVID-19 (-) specimens were imaged with transmission electron microscopy (TEM). The tissue was analyzed for viral RNA using polymerase chain reaction (PCR) and viral spike protein. Formalin-fixed paraffinembedded tissues were stained with hematoxylin and eosin (H&E) and subjected to immunohistochemical analysis for endothelial Nitric Oxide Synthase (eNOS) expression (marker of endothelial function). Endothelial progenitor cells (EPC) function was assessed ex vivo by determination of endothelial colony forming units from blood samples collected from the COVID-19 (+) and COVID (-) men with severe ED. RESULTS: TEM revealed extracellular viral particles ∼100 nm in diameter, with prominent peplomers (spikes), and electron-dense dots of the nucleocapsid inside the particles near penile vascular endothelial cells of the COVID-19 (+) patients. Notably, viral particles were not detected in tissue obtained from COVID-19 (-) men. COVID-19 RNA was detected in both the penis biopsy samples from men with a history of COVID, but not in the samples from COVID-19 (-) men. There were no significant differences in H&E staining between COVID-19 (+) and COVID-19 (-) men and viral spike protein was not detected. Immunohistochemistry showed decreased eNOS expression in the corpus cavernosum of COVID-19 (+) men compared to COVID-19 (-) men, consistent with endothelial dysfunction. COVID-19 spike protein-positive cells could not be detected by immunofluorescence despite positive COVID-19 PCR. EPC levels from the COVID-19 (+) men were 0 cell/well and 1.167 cell/well respectively compared to mean EPCs from 34 COVID-19 (-) men with severe ED (4.04 cells/well), suggesting impaired endothelial function. CONCLUSIONS: Our study is the first to demonstrate the presence of COVID-19 virus in the penis long after the initial infection in humans. Our study also suggests that widespread endothelial cell dysfunction from COVID-19 infection can contribute to resultant erectile dysfunction. Future studies will evaluate novel molecular mechanisms of how COVID-19 infection leads to ED. IMPACT STATEMENT: COVID-19 can linger in the penis long after initial infection and can contribute to erectile dysfunction.

12.
World J Virol ; 11(2): 98-103, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1791990

ABSTRACT

Several mechanisms may explain how exercise training mechanistically confers protection against coronavirus disease 2019 (COVID-19). Here we propose two new perspectives through which cardiorespiratory fitness may protect against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Physical exercise-activated adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling induces endothelial nitric oxide (NO) synthase (eNOS), increases NO bio-availability, and inhibits palmitoylation, leading to specific and immediate SARS-CoV-2 protection. AMPK signaling also induces angiotensin 1-7 release and enhances eNOS activation thus further mediating cardio- and reno-protection. Irisin, a myokine released from skeletal muscles during aerobic exercise, also participates in the AMPK/Akt-eNOS/NO pathway, protects mitochondrial functions in endothelial cells, and antagonizes renin angiotensin system proinflammatory action leading to reductions in genes associated with severe COVID-19 outcomes. Collectively, all the above findings point to the fact that increased AMPK and irisin activity through exercise training greatly benefits molecular processes that mediate specific, immediate, and delayed SARS-CoV-2 protection. Maintaining regular physical activity levels is a safe and affordable lifestyle strategy against the current and future pandemics and may also mitigate against obesity and cardiometabolic disease syndemics. Move more because a moving target is harder to kill.

13.
Matrix Biol Plus ; 14: 100106, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1768400

ABSTRACT

The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.

14.
Mult Scler Relat Disord ; 59: 103557, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1730004

ABSTRACT

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially with more severe neurological signs. This condition can become intolerable when these patients suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the mechanisms of hyperthermia in patients with MS, and they may encounter when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory role and relevant adaptation to regular physical exercise are summarized.


Subject(s)
COVID-19 , Multiple Sclerosis , Nervous System Diseases , Exercise , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/therapy , SARS-CoV-2
15.
Critical Care Medicine ; 50(1 SUPPL):539, 2022.
Article in English | EMBASE | ID: covidwho-1691826

ABSTRACT

INTRODUCTION: Endothelial cell (EC) dysfunction results in reduced nitric oxide (NO) bioavailability leading to inflammation and increased susceptibility to infectious agents. Heme oxygenase-1 (HO-1) produces potent antioxidant and anti-inflammatory products including carbon monoxide. SARS-CoV-2 and influenza affect ECs in multiple vascular beds, including pulmonary tissue. The omega-3 fatty acid eicosapentaenoic acid (EPA) and its metabolites preserve EC function in a manner that may contribute to reduced incident cardiovascular events (REDUCE-IT). Currently, EPA is being tested in patients with or at risk for COVID-19. This study tested the effects of EPA on NO and peroxynitrite (ONOO-) release under conditions of inflammation using lipopolysaccharide (LPS) and the cytokine IL-6. We also measured expression of HO-1 after cell challenge with IL-6. METHODS: Human lung microvascular endothelial cells (HMVEC-L) were pretreated with vehicle or EPA (40 μM) in 2% FBS for 2 h, then challenged with either IL-6 (12 ng/ml) or LPS (200 ng/ml) for 24 h. Cells (including untreated controls) were stimulated with calcium ionophore to measure maximum production of NO and peroxynitrite (ONOO-) using tandem porphyrinic nanosensors. Proteomic analysis was performed using LC/MS to assess relative expression levels. Only significant (p< 0.05) changes in protein expression between treatment groups >1-fold were analyzed. RESULTS: HMVEC-L challenged with LPS and IL-6 showed a pronounced loss of NO release by 22% (p< 0.01) and 18% (p< 0.01), respectively, concomitant with an increase in ONOO- by 28% (p< 0.01) and 26% (p< 0.01), respectively. As a result, the [NO]/[ONOO-] ratio, a marker of eNOS coupling efficiency, decreased by 39% (p< 0.001) and 35% (p< 0.001) with LPS and IL-6, respectively. However, EPA increased this ratio by 39% (p< 0.01) in both LPS and IL-6 treated cells. EPA also caused a 5.7-fold (p = 4.4 × 10-38) increase in expression of HO-1 with IL-6. CONCLUSIONS: These findings indicate that EPA improves NO bioavailability and reduces nitroxidative stress in pulmonary ECs during inflammation with LPS or IL-6. These studies indicate a protective effect of EPA on pulmonary ECs that may reduce inflammatory activation during sepsis, influenza, or advanced COVID-19 that may mediate many aspects of multiorgan system failure.

16.
Med Hypotheses ; 158: 110736, 2021 Nov 09.
Article in English | MEDLINE | ID: covidwho-1510119

ABSTRACT

The emergence of coronavirus disease (COVID-19) in China at the end of 2019 has caused a large global outbreak. COVID-19 is largely seen as a thrombotic and vascular disease targeting endothelial cells (ECs) throughout the body that can provoke the breakdown of central vascular functions. This explains the complications and multi-organ failure seen in COVID-19 patients including acute respiratory distress syndrome, cardiovascular complications, liver damage, and neurological damage. Acknowledging the comorbidities and potential organ injuries throughout the course of COVID-19 is therefore crucial in the clinical management of patients. Here we discuss BPC 157, based primarily on animal model data, as a novel agent that can improve the clinical management of COVID-19. BPC 157 is a peptide that has demonstrated anti-inflammatory, cytoprotective, and endothelial-protective effects in different organ systems in different species. BPC 157 activated endothelial nitric oxide synthase (eNOS) is associated with nitric oxide (NO) release, tissue repair and angiomodulatory properties which can lead to improved vascular integrity and immune response, reduced proinflammatory profile, and reduced critical levels of the disease. As a result, discussion of its use as a potential prophylactic and complementary treatment is critical. All examined treatments, although potentiality effective against COVID-19, need either appropriate drug development or clinical trials in humans to be suitable for clinical use.

17.
Pathog Glob Health ; 116(3): 178-184, 2022 05.
Article in English | MEDLINE | ID: covidwho-1437790

ABSTRACT

For COVID-19 (Coronavirus Disease-2019) cases, detecting host-based factors that predispose to infection is a very important research area. In this study, the aim is to investigate the MBL2 and NOS3 gene polymorphisms in COVID-19 patients with lung involvement, whose first nasopharyngeal PCR results were negative. Seventy-nine patients diagnosed with COVID-19 between April-June 2020 who were admitted to a university hospital, and 100 healthy controls were included. In the first statistical analysis performed between PCR-positive, CT-negative and PCR-negative, CT-positive patients; the AB of MBL2 genotype was significantly higher in the first group (p = 0.049). The B allele was also significantly higher in the same subgroup (p = 0.001). The absence of the AB genotype was found to increase the risk of CT positivity by 6.9 times. The AB genotype of MBL2 was higher in healthy controls (p = 0.006). The absence of the AB genotype was found to increase the risk of CT positivity; also, it can be used for early detection and isolation of patients with typical lung involvement who had enough viral loads, but whose initial PCR results were negative.


Subject(s)
COVID-19 , Mannose-Binding Lectin , COVID-19/diagnosis , Genetic Predisposition to Disease , Genotype , Humans , Mannose-Binding Lectin/genetics , Nitric Oxide Synthase Type III/genetics , Polymerase Chain Reaction/methods
18.
Ageing Res Rev ; 64: 101201, 2020 12.
Article in English | MEDLINE | ID: covidwho-907102

ABSTRACT

The COVID-19 pandemic poses an imminent threat to humanity, especially to the elderly. The molecular mechanisms underpinning the age-dependent disparity for disease progression is not clear. COVID-19 is both a respiratory and a vascular disease in severe patients. The damage endothelial system provides a good explanation for the various complications seen in COVID-19 patients. These observations lead us to suspect that endothelial cells are a barrier that must be breached before progression to severe disease. Endothelial intracellular defences are largely dependent of the activation of the interferon (IFN) system. Nevertheless, low type I and III IFNs are generally observed in COVID-19 patients suggesting that other intracellular viral defence systems are also activated to protect the young. Intriguingly, Nitric oxide (NO), which is the main intracellular antiviral defence, has been shown to inhibit a wide array of viruses, including SARS-CoV-1. Additionally, the increased risk of death with diseases that have underlying endothelial dysfunction suggest that endothelial NOS-derived nitric oxide could be the main defence mechanism. NO decreases dramatically in the elderly, the hyperglycaemic and the patients with low levels of vitamin D. However, eNOS derived NO occurs at low levels, unless it is during inflammation and co-stimulated by bradykinin. Regrettably, the bradykinin-induced vasodilation also progressively declines with age, thereby decreasing anti-viral NO production as well. Intriguingly, the inverse correlation between the percentage of WT eNOS haplotype and death per 100K population could potentially explain the disparity of COVID-19 mortality between Asian and non-Asian countries. These changes with age, low bradykinin and NO, may be the fundamental reasons that intracellular innate immunity declines with age leading to more severe COVID-19 complications.


Subject(s)
Aging/metabolism , COVID-19/metabolism , COVID-19/mortality , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Age Factors , Bradykinin , COVID-19/enzymology , COVID-19/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Haplotypes , Humans , Immunity, Innate , Nitric Oxide Synthase Type III/genetics , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL